# Endpoints that may correlate with cure & validation of biomarkers

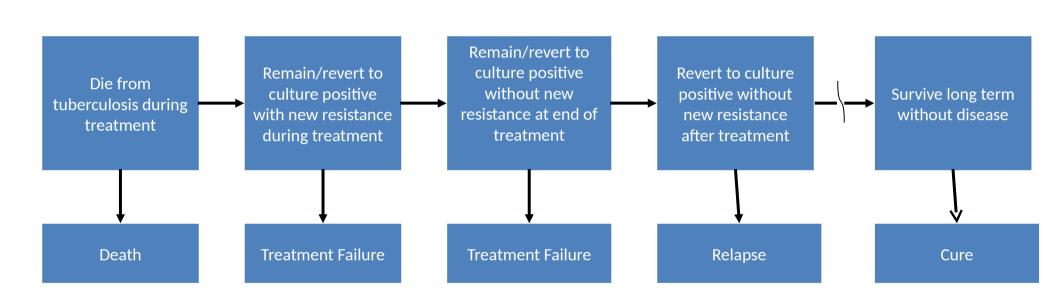
#### **Gerry Davies**

Reader in Infection Pharmacology Institutes of Infection & Global Health and Translational Medicine



EMA Workshop on Update of TB Guidelines London 25<sup>th</sup> November 2016

#### **Overview**

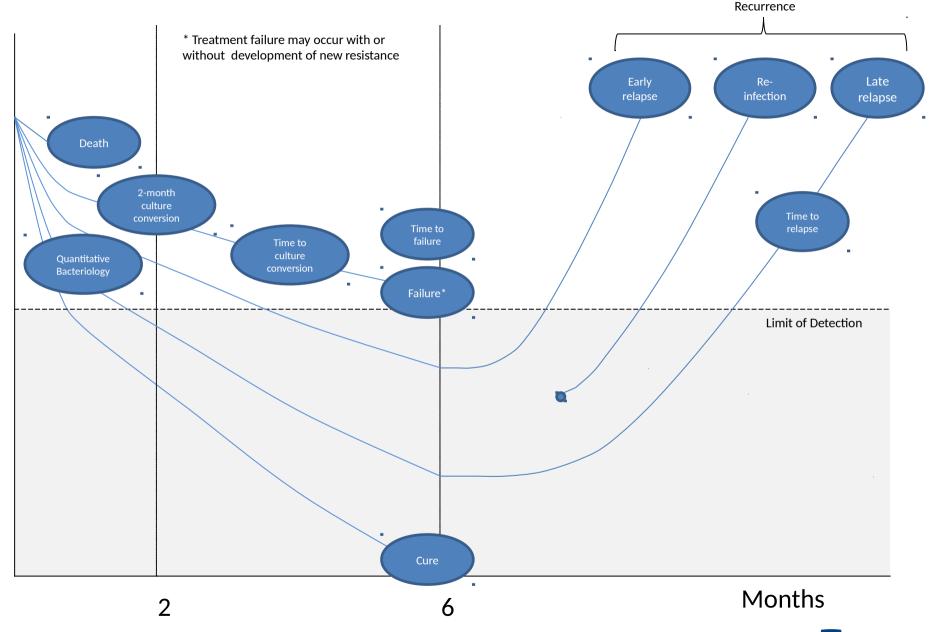



How are endpoints be related to each other ?

- What data are available to us ?
- What do we mean by surrogacy ?
- What does the current evidence show ?
- What do we mean by validation ?
- Which endpoints should we use in the future ?

# **Causal linkage of efficacy endpoints**

Increasing potency of regimens

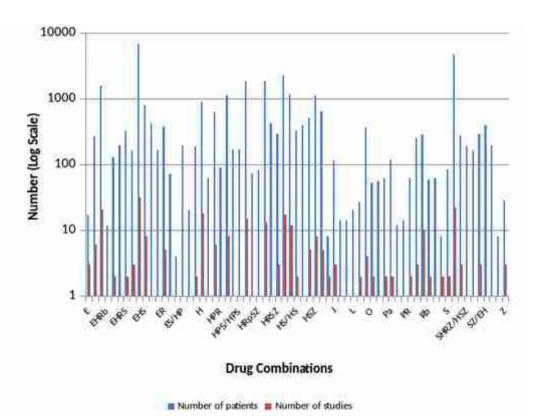



"Bactericidal activity"

"Sterilizing activity"



# **Quantitative basis of efficacy endpoints**




UNIVERSITY OF LIVERPOOL



## **Phase II Systematic Reviews**

N=37,173 67 drugs/combinations



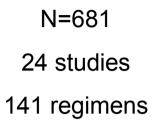
133 trials with Phase IIA/B Outcomes

UNIVERSITY OF LIVERPOOL

96 Phase III trials with intermediate outcomes

EBA<sub>0-2</sub> and 8w CC most commonly reported endpoints

Inconsistent reporting of other EBA endpoints (EBA<sub>0-7</sub>, EBA<sub>0-14</sub>) and alternative approaches


Only 3 regimens with EBA over >2 days and 8w CC data







No. Patients No. Regimens Combination Culture Rb 12 Solid 1 3 27 z Solid 3 J Solid 41 2 s 13 Solid ES. 4 1 Solid JZ 15 1 Solid 1 JPa Solid 14 SZ 8 2 Solid 2 Pa Solid 29 1 -15 PaZ Solid 3 R Solid 28 Rp. 16 1 Solid E Solid 17 3 0 Solid 53 5 2 HRS Solid B PaMZ Solid 15 1 2 RS Solid 8 6 EHRZ Solid 51 G 10 1 Solid 2 HS Solid 8 2 М 18 Solid 1 L. Solid 10 EHR Solid 8 2 2 HZ Solid ġ 2 ER Solid B 1 HRZ 9 Solid 16 н 149 Solid 2 ESHRZ Solid 8 4 SHRZ Solid 47 HR Solid 8 2 2 EH Solid 8 2 HSZ Solid 8 Г T.

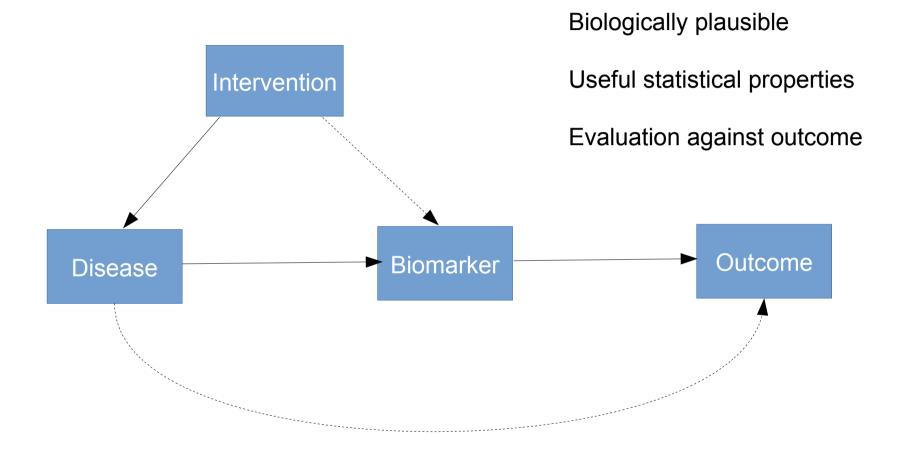


EBA 0-2 days (log10 CFU/ml sputum/day)

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3



#### **8w culture conversion**




|                |                  |                    | 5 F S            |      |     |      |         |     | ****         |      |      |    |      |      | N=′   | 1827   | 6          |
|----------------|------------------|--------------------|------------------|------|-----|------|---------|-----|--------------|------|------|----|------|------|-------|--------|------------|
| Combination    | Culture<br>Solid | No. Patients<br>58 | No. Regimens     |      |     | 10   |         |     | 1            |      |      |    |      |      |       |        |            |
| s              | Solid            | 54                 | 1                |      |     |      | -       |     | 1            |      |      |    |      |      |       |        |            |
| PS             | Solid            | 37                 | 1                |      |     |      | <u></u> |     | - 12         |      |      |    |      |      | 107 : | etudi  | <b>DC</b>  |
| HRpSZ          | Solid            | 83                 | 2                |      |     | _    |         | _   | 3            |      |      |    |      |      |       | ิรเนนเ | <b>C</b> 3 |
| SZ/EH          | Solid            | 214                | 2                |      |     |      |         | _   | 1            |      |      |    |      |      |       |        |            |
| ES/HP          | Solid            | 195                | 1                |      |     |      | _       |     |              |      |      |    |      |      |       |        |            |
| SZ/HZ          | Solid            | 198                | i i              |      |     |      |         | _   |              |      |      |    |      |      | 16 ro | aima   | NDO        |
| HP             | Solid            | 424                | ŝ                |      |     |      |         |     |              |      |      |    |      |      | 46 re | gine   |            |
| HT             | Solid            | 522                | 5                |      |     |      |         |     | -            |      |      |    |      |      |       | 0      |            |
| SHP/HP         | Solid            | 83                 | ž                |      |     |      |         |     | - 34         |      |      |    |      |      |       |        |            |
| SZ             | Solid            | 206                | 3                |      |     |      |         | -   | 1            | _    |      |    |      |      |       |        |            |
| SHP            | Solid            | 969                | 7                |      |     |      | 1       |     | 4            |      |      |    |      |      |       |        |            |
| н              | Solid            | 533                | 6                |      |     |      |         | _   | - 3          |      |      |    |      |      |       |        |            |
| SH             | Solid            | 849                | 8                |      |     |      |         | 2   |              | -    | 25   |    |      |      |       |        |            |
| HST            | Solid            | 442                | 5                |      |     |      |         | 1.1 |              | -    |      |    |      |      |       |        |            |
| OHRZ           | Solid            | 53                 | 1                |      |     |      |         |     | - 54         |      |      |    |      |      |       |        |            |
| EHS/EH         | Solid            | 214                | 2                |      |     |      |         |     | 3            |      |      |    |      |      |       |        |            |
| EH             | Solid            | 38                 | 2                |      | -   |      |         |     | -            |      |      |    |      |      |       |        |            |
| HS/HS          | Solid            | 327                | 2                |      |     |      |         |     | - 22         | -    |      |    |      |      |       |        |            |
| HSZ            | Solid            | 319                | 2 2 2 3          |      |     |      |         |     |              | _    |      | _  |      |      |       |        |            |
| HPS/HPS        | Solid            | 171                | 1                |      |     |      |         |     | - 24         |      | -    |    |      |      |       |        |            |
| HR             | Solid            | 1415               | 10               |      |     |      |         |     | - 3          | -    | -    |    |      |      |       |        |            |
| R              | Solid            | 77                 | 2                |      |     |      |         |     | - 80         |      |      |    |      |      |       |        |            |
| SHRZ/HT        | Solid            | 162                | ĩ                |      |     |      |         |     | - 35         | _    |      |    |      |      |       |        |            |
| ER             | Solid            | 135                | 2                |      |     |      |         |     | - 3 <u>-</u> |      | 1.00 | -  |      |      |       |        |            |
| SHRZ/HSZ       | Solid            | 191                | 2                |      |     |      |         |     | 1            | 151  |      |    |      |      |       |        |            |
| EHS            | Solid            | 157                | 3                |      |     |      |         |     | 12           |      |      |    | -    |      |       |        |            |
| HRS            | Solid            | 1500               | 13               |      |     |      |         |     | - 14         |      |      | _  |      |      |       |        |            |
| PB             | Solid            | 42                 | 1                |      |     |      |         |     | 18           |      |      |    |      |      |       |        |            |
| HRS/HR         | Solid            | 413                | 4                |      |     |      |         |     | 12           |      | _    |    |      |      |       |        |            |
| EHR            | Solid            | 919                | 13               |      |     |      |         |     | 14           |      | _    | _  |      |      |       |        |            |
| HOR            | Solid            | 62                 | 1                |      |     |      |         |     | 13           |      |      |    |      |      |       |        |            |
| ERZ            | Solid            | 71                 |                  |      |     |      |         |     | 1            |      | _    | _  |      |      |       |        |            |
| HPR            | Solid            | 120                | 2<br>2<br>1      |      |     |      |         |     | 1            |      | -    |    | _    |      |       |        |            |
| EHRS           | Solid            | 171                | ĩ                |      |     |      |         |     | 18           |      |      |    | 100  |      |       |        |            |
| GHRZ           | Solid            | 793                | 2                |      |     |      |         |     | 1            |      |      |    |      |      |       |        |            |
| HBZ            | Solid            | 1492               | 15               |      |     |      |         |     | 13           |      |      |    | -    |      |       |        |            |
| HRZ<br>EHRpZ   | Solid            | 198                | 2<br>15<br>1     |      |     |      |         |     | 14           |      |      | -  | -    |      |       |        |            |
| MHRZ           | Solid            | 625                | 3                |      |     |      |         |     | 13           |      |      |    | _    |      |       |        |            |
| SHRZ           | Solid            | 3479               | 25               |      |     |      |         |     | - 13         |      |      |    | -    |      |       |        |            |
| EHRSZ          | Solid            | 153                | 3<br>25<br>1     |      |     |      |         |     | - 22         |      |      |    | _    |      |       |        |            |
| HRZE           | Solid            | 1618               | 8                |      |     |      |         |     | 12           |      |      | 2  | -    |      |       |        |            |
| SHRZ/HR        | Solid            | 278                | 4                |      |     |      |         |     |              |      |      |    | -    | 22   |       |        |            |
| EMRZ           | Solid            | 701                | 8<br>4<br>2<br>1 |      |     |      |         |     | - 12         |      |      | 1. | _    | _    |       |        |            |
| EHRbZ          | Solid            | 107                | 1                |      |     |      |         |     | 1            |      |      |    |      | -    |       |        |            |
| 11020-0020-000 | 0.000            | 1000               | 210              |      |     |      |         |     |              |      |      |    |      |      |       |        |            |
|                |                  |                    |                  |      |     |      |         |     | 1            |      |      |    |      |      |       |        |            |
|                |                  |                    |                  |      | 1   | 1    | 1       | 1   | 1            | 1    | 1    | 1  |      |      |       |        |            |
|                |                  |                    |                  | 0.20 | 122 | 6227 | 3217    | 12  |              | 3320 | 1000 | 25 | 1000 | 1922 |       |        |            |
|                |                  |                    |                  | 0    | 10  | 20   | 30      | 40  | 50           | 60   | 70   | 80 | 90   | 100  |       |        |            |

% Culture -ve at 8 wks

# **Concept of surrogacy**





## Surrogate endpoint



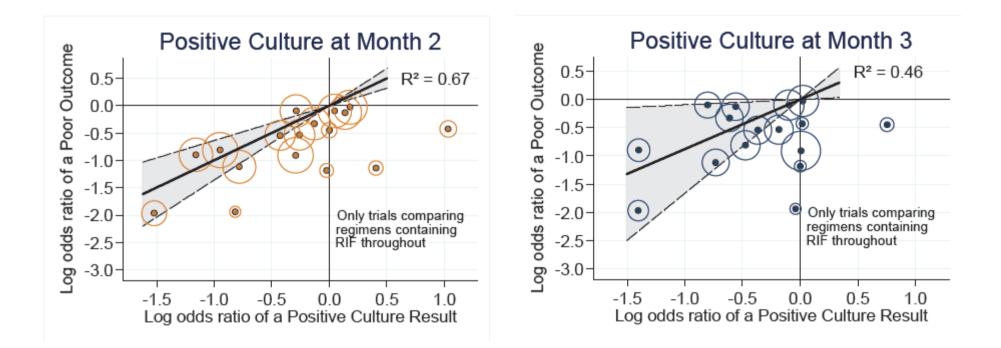
A biomarker that can replace the reference endpoint

- Trial level : The ability to capture treatment effect on the definitive endpoint (ρ<sub>z</sub> ,RE,PTE,R<sup>2</sup><sub>trial</sub>)
- Individual level : The ability to predict an individual's definitive outcome (PPV, NPV, ROC, R<sup>2</sup><sub>individual</sub>)
- These levels are theoretically independent (Simpson's paradox) though in practice often go together

## 8w CC : individual level



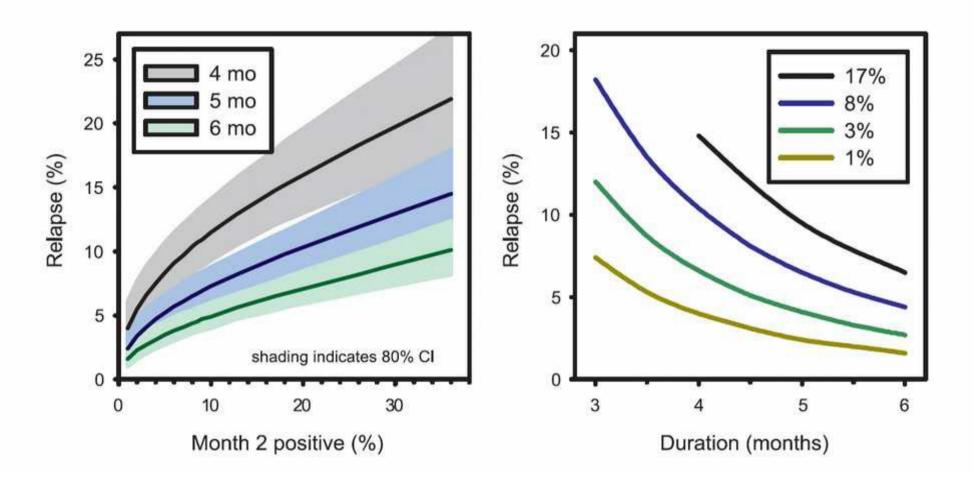



|                                                                                                                                                                | Studies (n) | Sample size (N) | Hierarchical regression | model                | Odds ratio (95% Cl) | PPV* (95% CI) | NPV* (95% CI) |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-------------------------|----------------------|---------------------|---------------|---------------|--|--|--|
|                                                                                                                                                                |             |                 | Sensitivity (95% CI)    | Specificity (95% CI) |                     |               |               |  |  |  |
| Relapse                                                                                                                                                        |             |                 |                         |                      |                     |               |               |  |  |  |
| Culture                                                                                                                                                        | 4           | 1298            | 40% (25-56%)            | 85% (77-91%)         | 3-8 (2-2-6-8)       | 18% (14–21%)  | 95% (95-96%)  |  |  |  |
| Smear                                                                                                                                                          | 6           | 9848            | 24% (12-42%)            | 83% (72-90%)         | 1.5 (1.1-2.2)       | 10% (8–12%)   | 93% (93-94%)  |  |  |  |
| Failure                                                                                                                                                        |             |                 |                         |                      |                     |               |               |  |  |  |
| Smear                                                                                                                                                          | 7           | 20 062          | 57% (41-73%)            | 81% (72-87%)         | 5-8 (4-3-7-8)       | 9% (9–10%)    | 98% (98–98%)  |  |  |  |
| * Ability of smear to predict poor outcomes, assuming 7% risk of relapse and 3% risk of failure. NPV=negative predictive value; PPV=positive predictive value. |             |                 |                         |                      |                     |               |               |  |  |  |
| Table 5: Pooled summary estimates for relapse or failure for patients with a positive sputum culture or smear at 2 months                                      |             |                 |                         |                      |                     |               |               |  |  |  |

Horne DJ Lancet ID 2010 10:387-94

#### 8w CC : trial level




15 BMRC trials 6974 participants 37 treatment comparisons



Phillips P and Fielding K 2008 IUATLD Conference Paris



#### **8w CC : Predicting duration**



Wallis RS PloS ONE 8(8) : e71116

# **Evaluation, Validation, Qualification**

UNIVERSITY OF LIVERPOOL

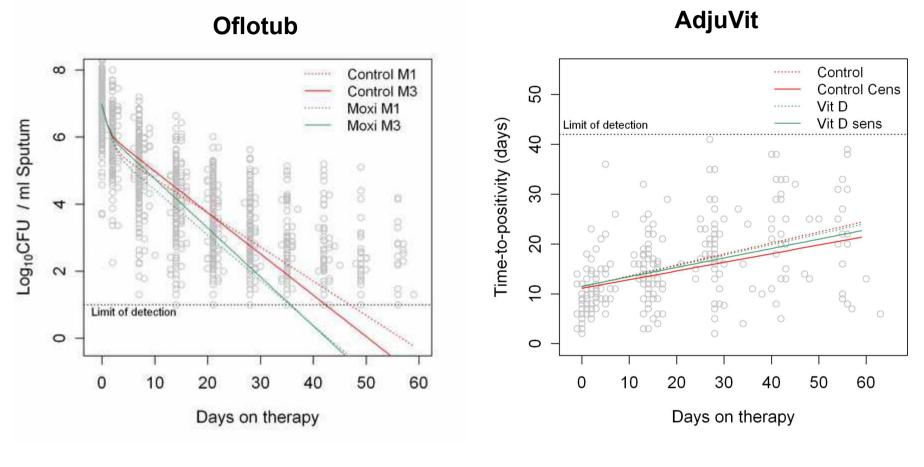
Prentice criterion

R<sup>2</sup><sub>trial</sub> "sufficiently close to" 1

Reasonably likely to predict clinical benefit

Widespread agreement about the significance of the test results

Can be relied upon to have a specific use and interpretable meaning




#### Longitudinal or time-to-event endpoints

- Independent of sampling timepoints
- No need for future ad hoc re-evaluation
- Unrestricted scale of measurement
- Greater statistical power
- Well-adapted to cumulative meta-analysis
- Little trial level evaluation due to design and reporting
- Model choice, LOD, missing data

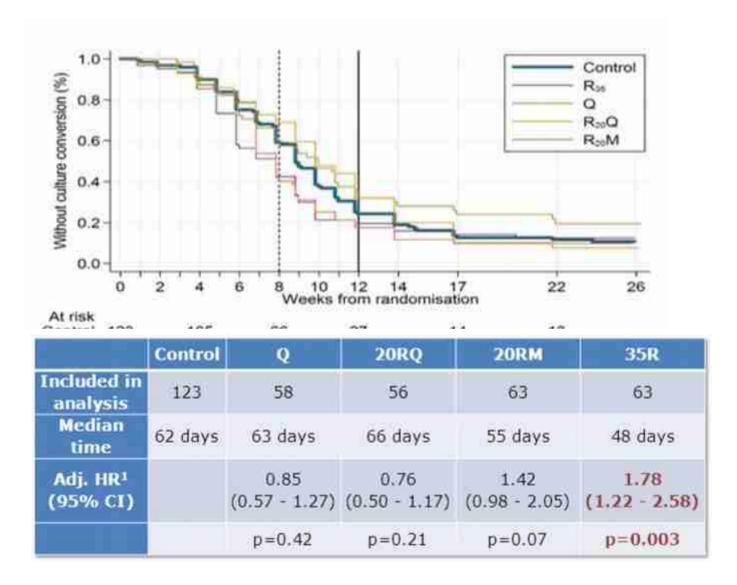


# **Longitudinal endpoints**



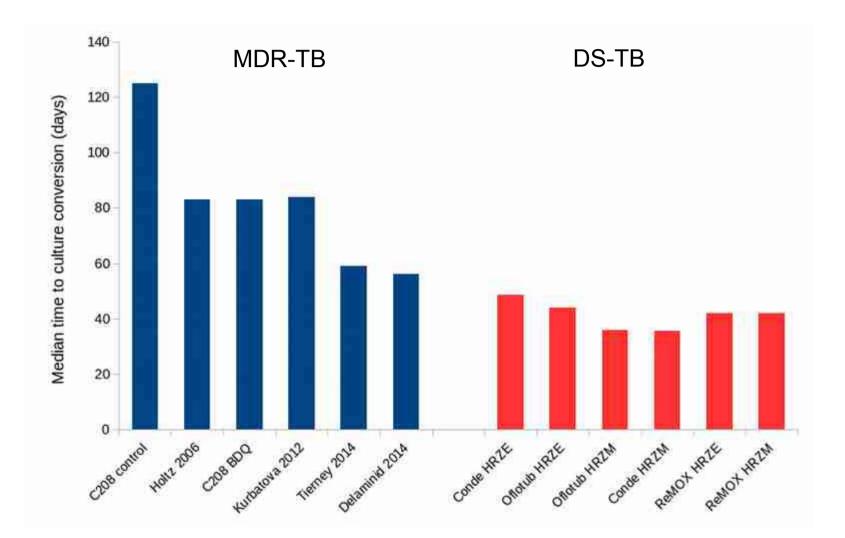
#### M3 method in NONMEM

Rustomjee R IJTLD. 2008 12:128-38


#### ${\tt I}$ () in WinBUGS

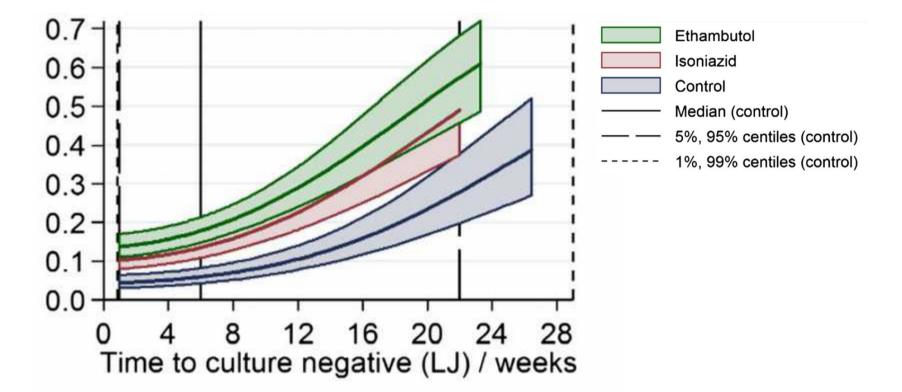
Martineau Lancet. 2012 377:242-50

Davies G Gordon conference on TB drug development 2011

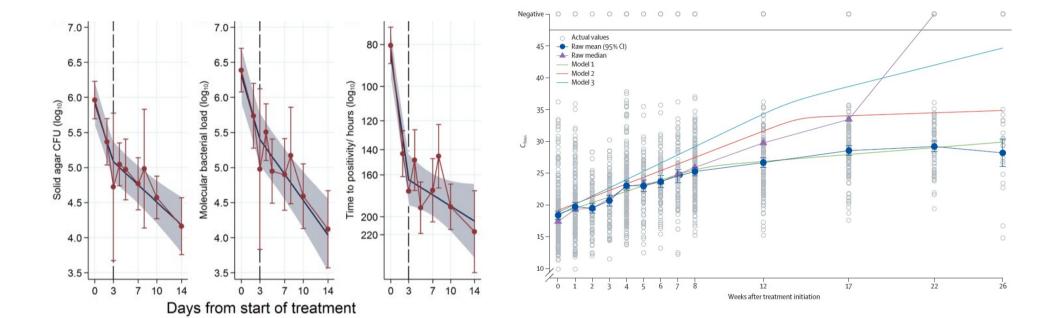



#### **Time-to-event endpoints**




# Scaling of time-to-event endpoints

UNIVERSITY OF LIVERPOOL




Davies GR Wallis RS 2016 IJTLD in press

#### **Time-to-event : individual level**



UNIVERSITY OF LIVERPOOL



#### **Culture-independent methods**

Honeyborne I 2014 J Clin Micro 52 : 3064-7

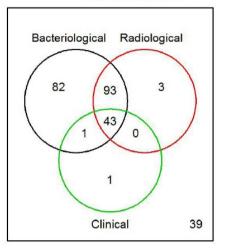
Friedrich S 2013 Lancet Resp Med 1:462

Xavier A 2013 J Clin Micro 51:1894



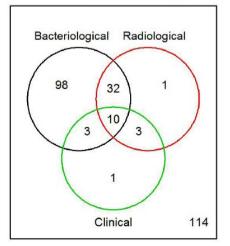





Host response (blood/sputum IFN-γ)

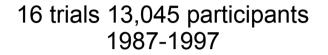
Whole blood bactericidal assay

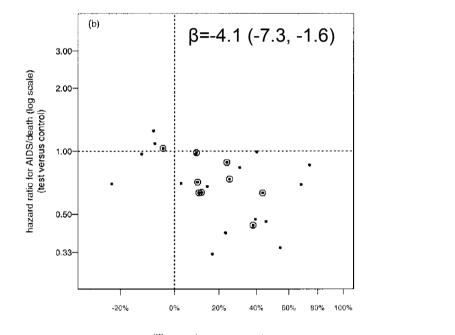
Host trans/proteo/metabolomic signatures


Functional imaging (FDG)

Composite endpoints

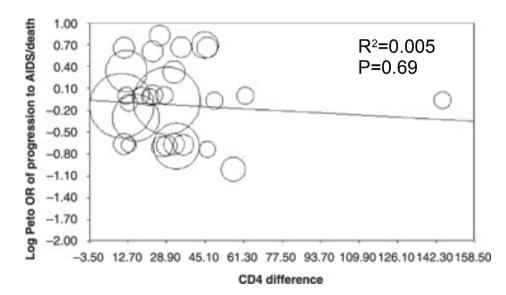



**On Treatment** 


**Off Treatment** 












difference in mean percentage change in CD4+ count (log scale) (test treatment - control treatment) 22 trials 8,363 participants 1994-2006

UNIVERSITY OF LIVERPOOL



HSMCG 2000 Aids Hum Retrovir 16 : 1123-33

Mills EJ 2008 HIV Med 9:849





- Biological and causal plausibility of bacteriological endpoints is strong
- Extensive evidence suggests the best-reported (8w CC) is a useful surrogate endpoint and predictive of duration of regimens in DS-TB
- Lack of consensus on outcomes or analytical approaches in Phase II hampers evaluation
- Longitudinal or time-to-event approaches offer many potential advantages and have some individual-level support
- Evaluation is a process not an event and meta-analysis would ideally be curated and cumulative
- A core outcome set would be desirable

# **Points for discussion**



What are the best endpoints and approaches to bridge the gap from Phase IIA to Phase IIB ?

What formal statistical approaches should be favoured for evaluation of early phase endpoints ?

How will evaluation of longitudinal or time-to-event biomarkers be achieved without a core outcome set or definitions ?

What are the implications of adaptive approaches for evaluation of novel endpoints and biomarkers ?

How should the TB trials community support data collection and meta-analytic approaches to address these issues ?