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Background 

•  Mathematical epidemiology is at its centenary 
•  The very early models (Ross, 1915; Kermack 

and McKendrick, 1927; Reed and Frost, 1920s) 
tended to be concerned with exploring 
hypotheses 

•  E.g. K & K showed that an epidemic could end 
due to acquisition of immunity rather than the 
attenuation of the pathogen as had been 
previously suggested  



History (a bit subjective) 

•  1950s-70s: Focus on simple models, often 
including randomness and mathematical 
analysis thereof 

•  1980s-90s: Differential-equation based 
models (no randomness) stratified by age 
primarily for childhood infections 

•  2000s: Random computationally intensive 
models aiming for high ‘realism’ 

•  Current directions: Much more focus on 
models that can be fitted to data – 
randomness but computationally ‘cheap’ 



Talk outline 

•  I will present short outlines of several 
different project / papers 

•  None of these is specifically about TB, but the 
modelling / statistical methodology should 
carry over 

•   The equations behind this are complex (and 
mainly not included) but the concepts are 
natural! 



Statistical framework 

•  ‘somewhat Bayesian’ 
•  Put distributions on parameters 
•  Sample from these using MCMC 
•  Propagate this uncertainty forward in a 

transmission-dynamic model 
•  Pros: Unified conceptual framework; copes 

well with ‘small data’; 
•  Cons: Subjectivity; algorithmic difficulty 



Ebola – historic outbreaks 

•  Ebola outbreaks are highly variable 
•  Rather than try to use differential equations, I 

considered a branching-process model 
•  Also, waiting times between outbreaks and 

the variability in case fatality rates is variable 
and inferable from historic data 



Ebola outbreaks pre-2014 
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Ebola outbreaks pre-2014 
Waiting times between outbreaks versus a ‘memoryless’ distribution  
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Ebola outbreaks pre-2014 
Case fatality rates 
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Weak transmission 

•  Near criticality (R0 ≈ 1) epidemics behave 
differently from far from it 

 
•  TB in some contexts may be close to criticality 
 
•  Joint work with Malwina Luczak, Graham 

Brightwell, Svarte Janson.  



2014 Ebola in Sierra Leone 
Compared to LSHTM model 
The post-control period exhibits fast decay but a long time to extinction 
The standard explanation for this is varying R0 – is there another possibility? 
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Theoretical results for the SIS model   
These show a decoupling of  expected prevalence and extinction probability 

Expected Prevalence of infection
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Theoretical results for SIR model   
These show strong initial-condition dependence 

Initial force of infection, XI,0
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Emergence of influenza 
pandemics 

•  Ebola outbreaks exhibited the memoryless 
property 

•  Does pandemic influenza? We considered a 
Bayesian model selection problem 

•  Fit inter-pandemic times to either an 
exponential (memoryless) or Gamma (history-
dependent) distribution and calculated the 
probability of each hypotheses – this is 
possible in Bayesian inference, not a 
misinterpretation of a p-value! 

•  Work with Ed Hill and Mike Tildesley 



Historic influenza pandemics 
Colour: real data; Black: simulated; Top: history-dependent; 
Bottom: memoryless; Columns: different assumptions about 
the actual history of pandemic influenza. 
 



The model fits well (scenario C strong prior) 

Memoryless History-dependent 



Prediction 
We can use these to predict next century’s pandemics 
 



Households 
•  Many populations are split into easily 

identifiable, well connected small sub-units 
•  In mathematical work, these are customarily 

called households, but the methodology is 
general 

•  Here, the idea is to calculate all outcome 
probabilities by brute force 

•  Work with Tim Kinyanjui, Josh Ross, Stefan 
Guettel, Jackie Cassell, Jo Middleton 



Scabies in care homes Scabies in Residential Care Homes
Sarcoptes scabiei is an ectoparasite that infests human skin, where
it burrows and lays eggs causing intense itching and scratching. We
capture its dynamics in a residential care home of size
N = S +E + I using the stochastic SEI model:

(S,E, I) → (S − 1, E + 1, I) at rate λSI ,

(S,E, I) → (S,E − 1, I + 1) at rate γE .
(8)

We make themodelling choice

λ =
β

(N − 1)α
, (9)

leaving us with paramters

θ = (α,β, γ) . (10)

We wish to estimate these and propagate forward the
uncertainty in policy-driven modelling.



Scabies in care homes 
Data and likelihood

The data† takes the form y = (Na, Ca, Ta)na=1, representing care
home size, number of cases at treatment and time between first
infection and treatment.

N 57 18 57 29 35 26 92
C 4 5 9 3 4 15 2
T (days) 61 172 161 368 123 123 4

Then the likelihood takes the form

L(y|θ) =
∏

a

v⊤
Ca

eTaQ(Na,θ)uinit . (13)

†
Hewitt, K A, Nalabanda, A and Cassell, J A (2014) Scabies outbreaks in residential care homes:

factors associated with late recognition, burden and impact. A mixed methods study in England.
Epidemiology and Infection. ISSN 0950-2688



Mathematical content – 
numerics matter! 
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Use of transmission 
dynamic model to quantify 
costs of delay 
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4.2. Safety of Ivermectin396

Barkwell and Shields [8] reported 172 deaths in a population of size 210397

over a 36 month period, and 15 subsequent deaths over 6 months in a sub-398

population of 47 who had received ivermectin treatment, as well as 10 deaths399

in the remaining population of 163 over that 6 months period. They reported400

deaths for each month in the two sub-populations over the six months following401

ivermectin treatment. Barkwell and Shields performed two statistical tests on402

these data: chi-squared and Fisher’s exact. Of these, Fisher’s exact test is more403

accurate for small populations and answers the following question: if two404

groups, one of size 163 and one of size 47, are formed by picking individuals405

from the total population of 210 (with 25 deaths) uniformly at random, then406

what is the probability p of the pattern of deaths observed, or one with more407

deaths in the population of size 47. This test gives p < 0.0001 when applied to408

the data.409

This work received criticism from a more standard biostatistical and epi-410

demiological perspective – in particular due to the absence of control for ill-411

nesses other than scabies – shortly after its publication [49, 15]. Here we do not412

comment on these issues, but rather focus on the extent to which more gen-413

eral heterogeneity between individuals can invalidate methods such as Fisher’s414

exact test.415

Mathematically, we model heterogeneity by assuming that the mortality416

rates in the population are variable, and that in particular the probability of k417

deaths in a unit of size n over a time period t are given by a Poisson mixture418

L(k|µ,θ; n, t) =

∫ ∞

λ=0
Poisson(k|ntλ)Gamma(λ|(µ/θ),θ) dλ

=
(ntθ)k(1 + ntθ)−k−(µ/θ)Γ(k + (µ/θ))

k!Γ(µ/θ)
.

(14)

Here µ is the mean death rate in the population and θ is the variance divided419

by the mean, which we call the overdispersal. When θ → 0, we recover the420

situation where death rates are homogeneous, and larger values of θ imply421

more heterogeneity.422

17



Assuming variability in death 
rates massively increases p 



Plausible levels of 
heterogeneity in B&S data: 



IVERMECTIN MAY WELL BE SAFE 
Conclusion … 



Real shedding data

For influenza, Ebola and norovirus:
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Compartmental model

State-spacemodels where an individual is in a stateX(t) at time t
are common in epidemiology:

1 2 · · · · · · m − 1 m

γm−1γm−2γ2γ1

The ‘shedding’ data comes from experimentally infected
individuals. We suppose that the measured log titre (amount of live
virus) is proportional to the expected infectiousness in the linear
model above, E[λ(X(t))]. We can solve the Markov chain to get
derivatives with respect to parameters so these are available as well
as the likelihood.



Influenza posterior
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Influenza uncertainty quantitification

This allows us to propagate uncertainty forward for
population-level predictions

Consider a DDE model for delayed in-
terventions; if ϵ = 1 these always
work (top plot) and if ϵ = 0 they only
work before the infectious period (bot-
tom plot):

dS

dt
= −

β

N
S(t)I(t) ,

dE1

dt
=

β

N
S(t)I(t) − 2ωE1(t) − π1(d)

β

N
S(t − d)I(t − d) ,

dE2

dt
= 2ω(E1(t) − E2(t)) − π2(d)

β

N
S(t − d)I(t − d) ,

dI1

dt
= 2(ωE1(t) − γI1(t)) − ϵπ3(d)

β

N
S(t − d)I(t − d) ,

dI2

dt
= 2γ(I1(t) − I2(t)) − ϵπ4(d)

β

N
S(t − d)I(t − d) ,
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THANKS FOR YOUR TIME! 

Papers, collaborators, contact details etc: 
 
 
http://personalpages.manchester.ac.uk/staff/thomas.house/ !


